De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Volume met integratie

een figuur is ingesloten door
x2+y2+z2=1 en
x2+4y2+4z2=4

ik moet met integraite ( niet anders ) het volume bepalen van dat gebied

dan moet ik toch de functies gelijkstellen aan elkaar om het integratiegebied te bekomen??
dus x2+y2+z2 = x2/4 +y2 + z2
maar als je dat uitwerkt kom ik iets heel onlogisch uit naelijk x2=x2/4

intereteer ik dit mis? moet ik werken met cilindercoordinaten?

zouden jullie me op weg willen helpen?

dankje

maarte
Student universiteit BelgiŰ - dinsdag 21 juni 2005

Antwoord

Je moet eerst de vergelijkingen interpreteren, wat stellen ze voor, en hoe liggen de twee lichamen ten opzichte van elkaar.
De eerste is een bol met straal 1
Schrijf de tweede als (x/2)2+y2+z2=1
Dit is een ellipso´de met halve assen 2,1,1
Het middelpunt van de bol en de ellipso´de vallen triviaal samen.
Hieruit kunnen we besluiten dat de bol volledig binnen de ellipso´de ligt, en ze raken in een cirkel in het yz-vlak.
Je kan dus via drievoudige integratie het volume van de ellipso´de en de bol berekenen, en die twee van elkaar aftrekken.

Het antwoord zou 4p/3 moeten zijn.

Koen

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
dinsdag 21 juni 2005



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2020 WisFaq - versie IIb