De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Bepaal de cartesische vergelijking

Hoi,
Ik zou graag jullie hulp willen in verband met de volgende opgaven:
1) Bepaal de cartesische vergelijking van het vlak door P(1,0,3) en evenwijdig met de rechten a en b.
a: 2x + y + z + 1 =0
x - y + z = 0
b: (x-3)/4 = (y-2)/2 = z + 1

2)Bepaal de cartesische vergelijking van de loodlijn uit P(-1,2,3) op het vlak a.
a: 2x + 3y - z + 1 = 0

Ik weet dat het nogal veel gevraagd is, maar ik heb zeer binnenkort examen, ik studeer op mezelf en in mijn boeken staat het niet duidelijk uitgelegd...
Alvast bedankt..dankzij jullie leef ik op hoop
Elia.

Elia
3de graad ASO - donderdag 2 juni 2005

Antwoord

Beste Elia,

1) Een vlak is bepaald als je 3 gegevens hebt (onder 'gegevens' versta ik ofwel punten ofwel richtingsvectoren).
Een punt is gegeven, dat is al 1. Van beide rechten kan je een richtingsvector zoeken, dan heb je ook 2 richtingsvectoren voor je vlak en is dus ook de evenwijdigheid in orde, dat zijn er 2.
Uit rechte b kan je de richtingsvector direct aflezen, de noemers zijn immers de richtingsgetallen hier.
Rechte a zal je eerst in vectoriŽle- of parametervorm moeten schrijven en dan kan je ook daar de richtingsvector uithalen.

Het opstellen van de vergelijking kan dan handig m.b.v. een (4x4) determinant. Schrijf als eerste rij x y z 1 en dan per gegeven een nieuwe rij. Een stel richtingsgetallen (richtingsvector) krijgt een 0 in de laatste kolom en een punt krijg er een 1. Ontwikkelen naar de eerste rij geeft je dan de vergelijking.


2) Het opstellen van de vectoriŽle vergelijking gaat heel eenvoudig, daar heb je alleen een punt voor nodig (en dat heb je) en een richtingsvector. Maar je weet dat de rechte loodrecht op het vlak moet zijn, dus is de normaalvector van het vlak een richtingsvector. Vermits de coŽfficiŽnten van je vlak de normaalvector vormen, heb je het al bijna!

Vectorieel is de rechte dus: (-1,2,3)+k(2,3,-1)
Dit kan je evt. in een stelsel zetten en de uitdrukkingen voor x, y en z apart schrijven (dit is eigenlijk de parametervgl). Elimineren van k geeft je de carthesische vergelijking.

mvg,
Tom

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
donderdag 2 juni 2005
 Re: Bepaal de cartesische vergelijking 



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2020 WisFaq - versie IIb