De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Rationale en irrationale getallen

Wat is eigenlijk het verschil tussen rationale en irrationale getallen?

Anton
Student hbo - zaterdag 13 juli 2002

Antwoord

Rationale getallen zijn wat we in onze taal gewoonlijk aanduiden met 'breuken'.
Bedoeld worden dan getallen die geschreven worden als quotint van een geheel getal a en een natuurlijk getal b. Dus a wordt gekozen uit de verzameling { ...-3, -2, -1, 0, 1, 2, 3....} en b uit de verzameling {1, 2, 3, 4, 5....}
Door de teller als geheel getal te mogen kiezen, worden negatieve rationale getallen mogelijk.
Simpele voorbeelden zijn dan: , -2/23, 11/7, 0/4, 5/1 enz.

Het kenmerk van deze getallen is dat, wanneer ze decimaal geschreven worden, de decimalen op een bepaald moment stoppen f vanaf een bepaald punt gaan repeteren.
Als je 'stoppen' uitlegt als 'het cijfer 0 gaat repeteren' dan kun je dus alles samenvatten onder de rubriek: de decimalen gaan op een bepaald moment repeteren.

Voorbeelden: 1/4 = 0,25 of eventueel 0,2500000....
4/9 = 0,4444444.....
3/37 = 0,081081081081.....

Overigens hoeft het repeteren niet meteen na de komma te beginnen!

Voorbeeld: 269611/8325 = 32,3857057057057....

Irrationale getallen zijn de getallen waar de decimalen nooit stoppen en ook nooit gaan repeteren.

Voorbeelden: p, e, sin12, log25, (-16)

Het aantonen dat een getal niet-rationaal is, is niet altijd eenvoudig en er zijn bepaalde regelmatig voorkomende getallen waarvan men het (nog) niet met 100 % zekerheid weet. Bedenk dat een computer misschien moeiteloos honderduizenden decimalen kan ophoesten zonder dat er een repeterend patroon te zien is, maar dat dat niets bewijst! Het repeteren kan namelijk misschien daarna nog beginnen.

MBL
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zaterdag 13 juli 2002


klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2019 WisFaq - versie IIb