De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Hoek berekenen van twee lijnen

Twee lijnen snijden elkaar. Van de lijnen weet ik de coördinaten van het begin en eindpunt. Hoe bereken ik de hoek tussen de lijnen?

Chris
Iets anders - vrijdag 5 juli 2002

Antwoord

Van 2 lijnen waarbij je bij elk van de lijnen 2 punten weet, weet je dus ook de richtingscoefficient van elk der lijnen.

Nou is de richtingscoefficient (voortaan: 'rico') van een lijn gelijk aan de tangens van de hoek die deze lijn maakt met de x-as.
waarbij -90°$\leq\alpha\leq$90°. Dit heten richtingshoeken.

wanneer je nou van twee lijnen de rico weet, dan weet je hun richtingshoeken $\alpha$ en $\beta$ zijn.
Nou is de hoek die de twee lijnen met elkaar maken, gelijk aan de kleinste van de hoeken |$\alpha-\beta$| en
180°-|$\alpha-\beta$|.

Voorbeeld
lijn k door (1,1) en (3,3)
lijn l door (2,0) en (4,1)

$\Rightarrow$ k: y=x en l: y=½x-1
dus rck=1 en rcl=½ $\Leftrightarrow$
tan$\alpha$=1 en tan$\beta$=½
$\alpha$=45,0° en b=26,6°
|$\alpha-\beta$|=18,4°
Dit is kleiner dan 180°-|$\alpha-\beta$|, dus de hoek tussen de twee lijnen is 18,4°.

groeten,
martijn

mg
Vragen naar aanleiding van dit antwoord? Klik rechts..!
vrijdag 5 juli 2002



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2020 WisFaq - versie IIb