De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: Tekenen van complexe functies (3)

 Dit is een reactie op vraag 13908 
Ik snap wat jullie bedoelen, denk ik... Als ik het goed heb begrepen is het punt Z wat je in de formule y=1/z invult en Z'is wat er uitkomt? Als dit zo is heb ik een vraag: waarom is dit zo? Waarom spiegelt het punt alleen in de reŽele as? Ik denk dat dit met cosinus te maken heeft (cos(-t)=cos t). Maar als je een willekeurig punt in een assenstelsel zo behandelt krijg je toch ook niet: (3,4) - -(3,4)=(-3,-4)? Goed, zo een aantal vragen. Ik heb dit nodig voor een praktische opdracht voor wiskunde en wil het antwoord op de vragen graag ook begrijpen, ipv domweg neer te zetten dat "het gewoon in de beide assen spiegelt".
bvd,

Just
Leerling bovenbouw havo-vwo - dinsdag 5 april 2005

Antwoord

Dat er alleen sprake is van spiegeling in de reŽle as kan als volgt verklaard worden.

Je kan een complex getal (inderdaad) voorstellen met twee coŲrdinaten, a en b, dus Z = (a,b).
Maar om ermee te rekenen is het handig de complexe schrijfwijze te gebruiken:
Z = a + bi
Dan is Z' = 1/a+bi
En dan kan je dit door teller en noemer te vermenigvuldigen met a - bi herleiden tot:

Z' = a - bi/a2+b2

Stellen we nu 1/a2+b2 gelijk aan k, dan staat er

Z' = ka - kbi

En als we dit weer met coŲrdinaten schrijven: Z' = (ka, -kb).
Je ziet dat de oorspronkelijke coŲrdinaten met k worden vermenigvuldigd, en dat de tweede coŲrdinaat van een minteken wordt voorzien.
En dat laatste wil zeggen dat er een spiegeling plaats vindt in de reŽle as.

Je kan het ook laten zien met de formule van De Moivre:
Als Z = r( cos(t) + i∑sin(t) ), dan is

1/Z = Z-1 = 1/r∑( (cos(-t) + i∑sin(-t) ) = 1/r∑( cos(t) - i∑sin(t) )

N.B. r is de 'modulus' (de lengte; in het coŲrdinatenstelsel is dat |OZ|) van het complexe getal Z.

Die spiegeling heeft dus te maken met eigenschappen van de cosinus en zeker ook van de sinus.

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
dinsdag 5 april 2005
 Re: Re: Tekenen van complexe functies 



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3