De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Booglengte van y(t)=t*sin(t)

Na enkele jaren geen wiskunde meer gebruikt te hebben ben ik de VWO-wiskunde aan het ophalen. Daarbij kwam ik o.a. een opgave tegen, waarin de booglengte L van y(t)=t¡¤sin(t), 0$<$=t$<$=Pi, gevraagd wordt, dus
de integraal van 0 tot Pi van de wortel uit (1+ (y'(t))2 ).

Ik heb L al geprobeerd te berekenen m.g.v. goniometrische formules, met partieel integreren en ook met substitutie, maar ik kom er nog steeds niet uit. Volgens de GR is L ca. 4,7 (wat klopt met mijn verwachting, dat L ca 1/2¡¤Pi2 zou zijn).
Zou U mij kunnen helpen?

Agnes
Iets anders - zondag 9 januari 2005

Antwoord

Ik kom met de GR uit op 5,04.
f'(t)=t·cos(t)+sin(t), we moeten dus 0$\int{}$$\pi$√(1+(t·cos(t)+(sin(t)))2)dt berekenen.
Met de GR gaat dat het makkelijkst zo:
Y1=x·cos(x)+sin(x)
Y2=√(1+Y1(x)2)
En dan uitrekenen.

De functie die je krijgt lijkt me niet te primitiveren.
De bedoeling van de opgave is dat ook niet.
De leerlingen worden geacht deze lengte met de GR te berekenen.

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 9 januari 2005


klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2019 WisFaq - versie IIb