De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Goniometrie

hallo,

Mijn vraag gaat over het oplossen van en vergelijking,
en wel de volgende:
f(x)= 12 + 4sin(1/2px-1/4p)
- hoe bereken je hier algebraisch de toppen van op interval [0,12]
- hoe los je f(x)15 op?
Met deze vraag was ik wel een stuk gekomen, mijn vraag is dan ook om het zo duidelijk mogelijk in kleine stapjes te doen, zodat ik er zelf ook uit kan komen wat ik verkeerd heb gedaan.

Alvast hartstikke bedankt voor uw tijd en moeite!!

met vriendelijke groeten,
Wendy

Wendy
Leerling bovenbouw havo-vwo - woensdag 5 januari 2005

Antwoord

De eerste toppen van de sinus ontstaan als het argument (dus het deel binnen haakjes) 1/2p (maximum) bedraagt of 11/2p (minimum) bedraagt.
Elke volgende top ontstaat als het gedeelte binnen haakjes 2p groter wordt. Dat laatste betekent dat er bij x dan 4 bijkomt.
Dit volgt allemaal direct uit de standaardfunctie van de sinus.
Voor de maxima los je op: 1/2p=1/2px-1/4p 3/4p=1/2px x=11/2. Het volgende maximum vind je telkens 4 verder.
Voor de minima los je op: 11/2p=1/2px-1/4p 13/4p=1/2px x=31/2. Het volgende minimum vind je telkens 4 verder.

2) Eerst f(x)=15 oplossen ofwel sin(1/2px-1/4p)=3/4. Dat komt niet mooi uit...... dus ???

Met vriendelijke groet
JaDeX

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
donderdag 6 januari 2005



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2021 WisFaq - versie IIb