De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Kan je de productregel en de quotiŽntregel ook toepassen bij primitiveren?

Hoe moet je de vergelijking:
y = 3(x≤2+4), y = 2/(x-1) en y = 3/((x-1)≤) integreren?

En kan je de productregel en de quotiŽntregel ook toepassen bij primitiveren?

thijs
Leerling bovenbouw havo-vwo - dinsdag 7 mei 2002

Antwoord

In de eerste plaats even een kleine correctie op je vraag:
je kunt niet een vergelijking integreren, maar wel een functie.

Wat je eerste functie betreft kan ik je eigenlijk alleen maar verder helpen als je bekend bent met de methode van substitutie. Maar als je daar nooit eerder mee gewerkt hebt is ťťn voorbeeld daarvan natuurlijk zinloos. Laat dus maar even weten of daar naar gegrepen kan worden. Zo niet, dan denk ik dat je buiten je programma zit te werken (tenzij ik zelf iets over het hoofd zie, natuurlijk).

De tweede integraal is een standaardvorm: het wordt
F(x) = 2.ln|x-1| + c (met vooral die modulusstreepjes om de x-1).
Je moet hiervoor de afgeleide van f(x) = ln(x) (dat is immers 1/x) paraat hebben.

En voor de derde moet je de gegeven functie maar even lezen als f(x) = 3.(x-1)-2

Dan zie je dat je je heil moet zoeken in de functies
F(x) = -3.(x-1) -1 +c = -3/(x-1) + c

Wat het tweede deel van je vraag betreft: productregels en quotiŽntregels voor integralen zijn er niet. Natuurlijk zijn er wel allerlei foefjes te bedenken die er iets mee te maken hebben, maar in de omvang van het onderdeel integreren op de middelbare school komen ze niet aan bod.
Nooit dit soort regels gebruiken dus, zou ik zeggen.

MBL
Vragen naar aanleiding van dit antwoord? Klik rechts..!
dinsdag 7 mei 2002



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2020 WisFaq - versie IIb