De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Oplossen van vergelijkingen!!

Bij het voorbereiden van een toets stuitte ik op een paar problemen, kan iemand mij helpen??

cos 2x=1/2 hier moet ...p uitkomen.
tan x =3 hier moet ook ....p uitkomen
sin2x = 1/4

Ik denk dat je dit met behulp van de radialen en graden moet doen, maar ik zou totaal niet weten hoe ik het aan moet pakken.

HS

henk s
Student hbo - maandag 18 oktober 2004

Antwoord

Beste Henk,

Het is handig om de volgende formules van buiten te leren.
sin(x) = k x = arcsin(k) + 2sp of x = p - arcsin(k) + 2lp (s,l ).
cos(x) = n x = arccos(n) + 2mp of x = -arccos(n) + 2vp (m,v ).
tan(x) = p x = arctan(p) + 2qp of x = p + arctan(p) + 2rp (r,q ).
Ofwel tan(x) = p x = arctan(p) + gp.

Dat deze formules kloppen kun je uit de eenheidscirkel halen. De tangens-as gaat door het punt (1,0) en is evenwijdig aan de y-as.

cos(2x) = 1/2
Wanneer is cos(x) = 1/2 x = arccos(1/2) + 2kp of x = -arccos(1/2) + 2mp. Dus x = 1/3p + 2pp.
Maar we moesten cos(2x) = 1/2 hebben dus 2x = 1/3p + 2pp dus x = 1/6p + pp.

Dan kun je tan(x) = 3 vast en zeker zelf oplossen. (arctan((3)) = 1/3p).

sin2(x) = 1/4 sin(x) = 1/2 of sin(x)=-1/2.
En dat kun je ook oplossen.

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
maandag 18 oktober 2004


klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2019 WisFaq - versie IIb