De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Partialen

ik heb een programmaatje gemaakt dat een sinusgenerator een toon laat genereren tussen (y) -1 en +1. Van dit signaal maak ik de arcsin. dit signaal versterk ik door het te vermenigvuldigen met n/pi (n is het gewenste partiaalnummer). Vervolgens neem ik hiervan de cosinus. Het resultaat is een sinustoon met een frequentie n * (oorspronkelijke frequentie). Hoe kan dit?

Jetse
Student hbo - donderdag 24 juni 2004

Antwoord

Beste Jetse,

als je de arcsin neemt van een sinusoide dan krijg je in principe gewoon de tijd terug. Immers, arcsin(sin(t)) = t, tenminste voor t tussen -1/2p en 1/2p. Vermenigvuldig je dat met n/p en neem je dan de cosinus dan krijg je dus cos(n/pĚt). Dat is dus inderdaad een sinusoide met frequentie n/p keer de oorspronkelijke (NIET n keer!).

Vervolgens moet je er echter nog op letten hoe het zit buiten het interval van -1/2p tot 1/2p: in feite wordt arcsin(sin(t)) een soort zaagtand, door arcsin(sin(t)) = t symmetrisch t.o.v. -1/2p en 1/2p voort te zetten. Hoe zit het dan met de cosinus hiervan? Volgens mij zul je meestal een rare knik krijgen voor het moment waarop sin(t)=1. Alleen als je vermenigvuldigd met n (dus niet n/p) waarbij n een even geheel getal is, dan krijg je inderdaad een gladde sinusoide, omdat de knik in arcsin(sin(t)) dan precies op nĚ1/2p, een veelvoud van p valt, ten opzichte waarvan de cosinus symmetrisch is.
Met vriendelijke groet,

Guido Terra

gt
Vragen naar aanleiding van dit antwoord? Klik rechts..!
vrijdag 25 juni 2004


klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2019 WisFaq - versie IIb