De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Héél moeilijke limiet

ik heb volgende limiet proberen te berekenen met l'hospital mar kom op bepaald moment (1/4) / 0 uit wat natuurlijk niet kan,ik hoop dat jullie dit probleem kunnen uitzoeken:

lim (1-sin(x/2))/(cos(x/2)[cos(x/4)-sin(x/4)]) voor x-pi

vele groetjes gewenst en dank u voor de tijd die je in mij steekt

Yvonne
Student Hoger Onderwijs België - dinsdag 13 januari 2004

Antwoord

Hoi,

Neem t=4x, dan is de limiet:
L=lim[(1-sin(2t))/[cos(2t).(cos(t)-sin(t))]),t®p/4]

Een beetje gonio:
1-sin(2t)=sin2(t)+cos2(t)-2.sin(t).cos(t)=(cos(t)-sin(t))2
cos(2t)=cos2(t)-sin2(t)=(cos(t)+sin(t)).(cos(t)-sin(t))

Zodat
L=lim[1/(cos(t)+sin(t)),t®p/4]=Ö2/2

Groetjes,
Johan

andros
Vragen naar aanleiding van dit antwoord? Klik rechts..!
dinsdag 13 januari 2004


klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2019 WisFaq - versie IIb