De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Goniometrisch berekeningen met driehoeken

Goedendag, ik zit met het volgende raadsel:
ik heb van drie punten de co÷rdinaten en weet dat deze ten alle tijde een gelijkzijdige driehoek vormen.
Het doel is een formule te vinden waarmee de co÷rdinaten worden berekend voor deze drie punten als ik ze om hun gezamenlijke middelpunt links of rechtsom roteer.
Op zich is het middelpunt te bepalen, maar de co÷rdinaten ervan leveren mij wat moeite op. Deze gelijkzijdige driehoek kan namelijk doordat hij gedraait kan worden continu anders liggen

met vriendelijke groet

Stefan
Iets anders - dinsdag 19 februari 2002

Antwoord

De hoekpunten van de driehoek ABC liggen op een cirkel. Vanuit het middelpunt lopen dan lijnstukken met onderlinge hoeken van 120░ (= 2 /3 rad) naar de hoekpunten van de driehoek.
Neem bijvoorbeeld als co÷rdinaten voor de hoekpunten:
A(cos x, sin x) ; B(cos(x-2 /3), sin(x-2 /3)) en C(cos(x-4 /3, sin(x-4 /3)),
hiermee heb je een gelijkzijdige driehoek ABC waarvan de hoekpunten op een cirkel met straal 1 liggen.

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
woensdag 20 februari 2002



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2020 WisFaq - versie IIb