De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Algemene oplossing differentiaal vergelijking

wanneer ik van de volgende vergelijking de algemene oplossing (general solution volgens m'n boek): x(ii) + x(i) = 2-3e^-t·cos t (ii=2e afgeleide, i = 1e afgeleide)probeer te krijgen kom ik op het volgende antwoord dmv 2 particuliere oplossingen en de complementaire oplossingen (x(ii) +x(i)=0)

x(t)= Ae^-t + B + 2t - 3(3/2 - 3/2 i)·e^(-1+1)t

ik heb alleen geen idee of dit ook goed is

klopt dit?

bvd,

Stefan

Stefan
Student universiteit - vrijdag 18 juli 2003

Antwoord

Je gaat een beetje uit de bocht bij het bepalen van de particuliere oplossing van de vergelijking

x" + x' = -3 exp(-t) cos(t)

Het complexe getal dat overeen komt met de vorm van het rechterlid is -1+i en/of -1-i. Die zijn geen wortels van de karakteristieke vergelijking z2+z=0, dus de vorm die we moeten vooropstellen is exp(-t)[C sin(t) + D cos(t)]. Invullen in de vergelijking en gelijkstellen van overeenkomstige termen geeft dan C=D=3/2.

De oplossing van de volledige vergelijking wordt dus

x(t) = Aexp(-t)+B+2t+(3/2)exp(-t)[sin(t)+cos(t)]

waarin A en B zullen volgen uit het opleggen van de randvoorwaarden.

Dergelijke problemen kunnen volledig systematisch behandeld worden. Er is een duidelijk afgelijnde procedure die je kan volgen om ze op te lossen. Overtuig jezelf er van dat je van alle mogelijke situaties al eens een oefeningetje hebt opgelost.

Geef bijvoorbeeld de volledige oplossing van

x'''''-8x''''+42x'''-104x''+169x' = t7exp(2t)[2sin(3t)+3cos(3t)] + t2sin(3t)

Ik geef je er de oplossingen van de karakteristieke vergelijking bij: 0, 2+3i (tweevoudig), 2-3i (tweevoudig)

Constanten hoef je niet te bepalen, zeg gewoon hoe je ze zou berekenen.

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 20 juli 2003


klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2019 WisFaq - versie IIb