De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Differentiaalvergelijkingen

hallo ik heb overmorgen een tentamen en ik kom deze vraag niet uit. kan iemand me helpen?

Bij de lengtegroei y(t) van een zonnebloem geldt dat de lengteverandering per dag evenredig is met de lengte op dat tijdstip: dy/ dt y(t). Verder is een beperkende factor dat de lengteverandering per dag afneemt naarmate de maximale lengte van 4,00 m dichterbij komt dy/dt (4,00- y(t)) de totale lengteverandering per dag is dus evenredig met het procuct deze twee factoren.

a) stel de differentiaalvergelijking op
b) los de differentiaalvergelijking op als y(0)= 0,10 en y(30)= 1,00 m
c) bereken op welk tijdstip de lengte van de plant 3,5 m is geworden

Mirna
Student hbo - zondag 13 juli 2003

Antwoord

Hallo Mirna,

Als ik het goed begrijp is dus dy/dt = Cy(4-y) de differentiaalvergelijking, dit heet de logistieke groei (C is een constante). Je kan die oplossen door scheiding van de variablen, dit wordt: dy/4y-y2 = Cdt. Dan moet je enkel nog een integraalteken voor beide leden zetten en die linkse integraal uitwerken. De grenzen links zijn y-waarden: 0.1 en 1. Rechts zijn de grenzen t-waarden: 0 en 30. Op die manier kan je alle y's en t's doen verdwijnen, en kom je uit wat de constante C moet zijn.

En dan moet je enkel nog eens voor y de grenzen 0.1 en 3.5 invullen, en voor t de grenzen 0 en x, en oplossen naar x. Als er iets onduidelijk is stuur je maar iets terug.

Groeten,
Christophe.

Christophe
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 13 juli 2003
 Re: Differentiaalvergelijkingen 


klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2019 WisFaq - versie IIb