De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

De gemiddelde deviatie

Nog bedankt voor die vorige.....

Ik heb er nog eentje waar ik op blijf hangen, de deviatie berekening:

Je hebt zeg maar een rijtje met getallen en daarvan moet de spreidingsbreedte R, rekenkundig gemiddelde en gemiddelde deviatie berekend worden. De eerste 2 zijn nog wel makkelijk maar de 3e kom ik gewoon niet uit.

a) 12,3; 12,6; 11,8; 12,9 (van dit rijtje dan zeg maar de gemiddelde deviatie)

jurgen
Leerling mbo - dinsdag 17 juni 2003

Antwoord

De vier getallen die je opgeeft hebben het gemiddelde 12.4
Je weet waarschijnlijk wel dat deviatie een vreemd woord is voor 'afwijking'.
Voor elk van de 4 getallen schrijf je nu op hoeveel het afwijkt van het gemiddelde, rekening houdend met plus en min.
Dus: de afwijking van 12,3 bedraagt -0,1
De afwijking van 12,6 bedraagt 0,2
De afwijking van 11,8 bedraagt -0.6
De afwijking van 12.9 bedraagt 0.5
(je ziet natuurlijk dat je steeds het gemiddelde van het getal aftrekt om de afwijking te krijgen).
Als je nu die vier afwijkingen van het gemiddelde optelt, dan zie je dat er precies 0 uitkomt. Men kan vrij eenvoudig laten zien dat dat altijd het geval is, dus op die manier krijg je nooit verschillen te zien tussen totaal verschillende groepen getallen. Daarom vervangt men al die afwijkingen door hun absolute waarde; simpel gezegd laat men eventuele mintekens gewoon weg. In dit geval krijg je nu de getallen 0,1 en 0,2 en 0,6 en 0,5.
Door nu dit viertal op te tellen en te middelen heb je de gemiddelde afwijking.

MBL
Vragen naar aanleiding van dit antwoord? Klik rechts..!
dinsdag 17 juni 2003



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2020 WisFaq - versie IIb