WisFaq!

\require{AMSmath} geprint op zaterdag 8 augustus 2020

Re: Limiet

Dan nog lukt 't niet :

2sinxcosx/(1-2sin2x)(1/sin3x)

Mboudd
30-12-2018

Antwoord

Ik zou denken dat het handig is om alles zoveel mogelijk uit te drukken in $\sin(x)$. Je krijgt dan:

$
\eqalign{
& \mathop {\lim }\limits_{x \to 0} \frac{{\tan (2x)}}
{{\sin (3x)}} = \cr
& \mathop {\lim }\limits_{x \to 0} \frac{{\frac{{\sin (2x)}}
{{\cos (2x)}}}}
{{\sin (3x)}} = \cr
& \mathop {\lim }\limits_{x \to 0} \frac{{\frac{{2\sin (x)\cos (x)}}
{{1 - 2\sin ^2 (x)}}}}
{{3\sin (x) - 4\sin ^3 (x)}} = \cr
& \mathop {\lim }\limits_{x \to 0} \frac{{\frac{{2\sin (x)\cos (x)}}
{{1 - 2\sin ^2 (x)}}}}
{{\sin (x)(3 - 4\sin ^2 (x))}} = \cr}
$

...kan je dan verder?

WvR
30-12-2018


© 2001-2020 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#87349 - Limieten - Leerling mbo