WisFaq!

\require{AMSmath} geprint op zaterdag 10 april 2021

Goniometrische gelijkheden

Beste wisfaq,

Ik wil graag de volgende gelijkheid oplossen:

cos⁴(x)=sin⁴(x) (*)

Ik heb dit op de volgende manier opgelost maar ik weet niet of dit juist is. Ook ben ik benieuwd of er andere manieren zijn om deze gelijkheid op te lossen.

(1-cos2(2x))2 = (1+cos2(2x))2

Dan vind ik dat cos(2x)=0, dus x voor x een veelvoud van pi geldt (*).

Groeten,

Viky

viky
10-9-2015

Antwoord

Hallo Vicky,

Allereerst: uit cos(2x)=0 volgt niet: x is een veelvoud van pi.

Handiger dan jouw aanpak lijkt me om te bedenken dat links en rechts een 4e machts functie staat, dus:

A4=B4

Omdat het om even machten gaat, geldt dan:

A=B of A=-B

(immers: (-B)4=B4)

Je vindt zodoende oplossingen door op te lossen:

cos(x)=sin(x) of cos(x)=-sin(x)

Lukt het hiermee?

GHvD
10-9-2015


© 2001-2021 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#76233 - Goniometrie - Iets anders