WisFaq!

\require{AMSmath} geprint op vrijdag 14 augustus 2020

Zwaartelijnen

Beste,

In mijn wiskundehandboek staat de volgende oefening:

In een driehoek geldt: b2+c2=5 maal a2 - toon aan dat de zwaartelijnen uit B en C loodrecht op elkaar staan. Verder krijg je nog de co÷rdinaat van A(0,0) van B(c,0) en van c(p,q).

Ik heb al verschillende methodes geprobeert maar kom niet tot het uiteindelijke bewijs.
Alvast bedankt!

jef
9-2-2011

Antwoord

Voor de lengte van de zwaartelijnen gelden bekende formules, namelijk
zb2 = 1/2a2 + 1/2c2 - 1/4b2 en uiteraard dan geheel analoog hieraan
zc2 = 1/2a2 + 1/2b2 - 1/4c2.
We noemen het snijpunt van de twee zwaartelijnen Z. Nu wil je bewijzen dat driehoek BZC rechthoekig is, ofwel dat BZ2 + CZ2 = a2.
Daar BZ = 2/3.zb en CZ = 2/3.zc, wordt dit dan
4/9.zb2 + 4/9.zc2 = a2.

Als je aan de linkerkant de lengteformules voor de zwaartelijnen invult en hetgeen je dan krijgt herleid, krijg je 4/9.a2 + 1/9.b2 + 1/9.c2
Tezamen met het gegeven dat b2 + c2 = 5a2 levert dit dan precies het gestelde op, namelijk 4/9.a2 + 1/9.5a2 = a2, en het klopt dus!

MBL
10-2-2011


© 2001-2020 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#64266 - Analytische meetkunde - 2de graad ASO