WisFaq!

\require{AMSmath} geprint op zaterdag 15 augustus 2020

Re: Functie ontbinden in factoren

Hoi Davy,

Dank je voor je antwoord. In het boek geven ze alleen als antwoord 4(1+2y)2.
Zou je mij kunnen vertellen hoe ze aan dit antwoord komen?
Bedankt

bart
16-10-2010

Antwoord

Hoi,

Er zijn meerdere manieren om een functie te ontbinden, en je kunt andere antwoorden krijgen (die eigenlijk hetzelfde zijn alleen een andere 'verschijningsvorm' hebben).
Ik zal je eerst laten zien hoe het antwoordboekje geredeneerd heeft (zij hebben inderdaad eerst een 4 buiten haakjes gezet, zoals jij eerst gedaan had). Daarna zal ik laten zien dat mijn vorige antwoord hetzelfde is als dit antwoord.

$16y^2 + 16y + 4 = 4(4y^2 + 4y + 1)$
$4((2y)^2 + 2 \cdot 2y + 1)$
Stel $p = 2y$ dan staat er $4(p^2 + 2p + 1)$
$4(p+1)^2$, daarna $p = 2y$ terug invullen
$4 \cdot (2y+1)^2$

Nu zal ik aantonen dat dit antwoord hetzelfde is als $16(y+\frac{1}{2})(y+\frac{1}{2})$ oftewel $16 \cdot (y+\frac{1}{2})^2$.
$16(y+\frac{1}{2})^2$
$= 4^2 \cdot (y+\frac{1}{2})^2$
$= (4(y+\frac{1}{2}))^2$
$= (2 \cdot 2 \cdot (y + \frac{1}{2}))^2$
$ = (2(2y+1))^2$
$= 2^2 \cdot (2y + 1)^2$
$= 4 \cdot (2y + 1)^2$

Duidelijk?

Davy
16-10-2010


© 2001-2020 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#63278 - Algebra - Leerling mbo