WisFaq!

\require{AMSmath} geprint op vrijdag 7 augustus 2020

Complexe getallen

Ik heb de volgende info :

Omdat we nu met een vlak te maken hebben, is het handig om twee "coŲrdinaat" assen in te voeren. De getallenlijn waar we tot nu toe altijd mee gewerkt hebben, noemen we de reŽle as en de as loodrecht daarop door het getal 0 noemen we de imaginaire as.
De eenheid langs de imaginaire as noemen we i
Het voordeel van deze assen is dat we complexe getallen dan op twee manieren kunnen vastleggen.

* Door de lengte van de pijl en de hoek die de pijl maakt met de positieve reŽle as.
* Door de pijl te "ontbinden" en de lengte te geven van het reŽle deel en het imaginaire deel.

We noteren het reŽle deel van c als Re(c) en het imaginaire deel als Im(c).
Stel dat we voor een complex getal vinden Re(c) = 3 en Im(c) = 2.
Het getal wordt dan vaak op de volgende manier genoteerd: 3 + 2i

De oplossingen van het bovenstaande sommetje zijn met die schrijfwijze: Ī2i , want deze getallen lagen op de imaginaire as en hebben dus geen reŽel deel.
Nog een voorbeeld: x2 - 6x + 13 = 0
Toepassing van de abc-formule levert, na vereenvoudiging op dat de oplossingen van deze vierkantsvergelijking gegeven worden door 3 Ī √-4, dus door 3 Ī 2i

Ik snap nu echter niet waarom 3 + 2i = De oplossingen van het bovenstaande sommetje zijn met die schrijfwijze: Ī2i , want deze getallen lagen op de imaginaire as en hebben dus geen reŽel deel. ?

Alvast bedankt!

Claudia van Paaschen
6-12-2007

Antwoord

Beste Claudia,

Ofwel ontbreekt er in het midden van je verhaal een stuk, ofwel klopt het (inderdaad?) niet. Je verhaal over de voorstelling van complexe getallen in het vlak, is correct. Een complex getal c met Re(c) = 3 en Im(c) = 2 noteren we dan 3+2i. Dit is niet hetzelfde als het complex getal 3-2i, want daarvan is het imaginair deel -2 en niet 2.

Dan heb je het over oplossingen van "bovenstaande som", maar ik zie nergens een som. De vergelijking die als oplossingen Ī2i heeft, is bijvoorbeeld de vergelijking z2 = -4. Ga zelf na dat zowel 2i als -2i voldoen, als je weet dat i2 = -1.

Bij kwadratische vergelijkingen, als de discriminant D negatief is, gebruik je het volgende: Ī÷(D) = Īi÷(-D). Hierin is D positief dus heb je een gewone reŽle wortel.

mvg,
Tom

td
6-12-2007


© 2001-2020 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#53390 - Complexegetallen - Leerling bovenbouw havo-vwo