WisFaq!

geprint op zaterdag 20 juli 2019

Limiet berekenen

Hallo,

Ik heb hier zo'n hele rare limiet. nl. lim (van x= 2) (2x) - 2 ln (e(3-x))/(x-2)

Ik heb eerst 2 ingevuld en dan kom ik 2-2ln e / 0 uit. En normaal is dat tog oneindig.

Maar de uitkomst moet 5/2 zijn?
Heel fel bedankt!

A;
29-6-2007


Antwoord

Beste Alice,

Dat klopt. Als je in deze formule x=2 invult kom je op oneindig. En dat betekent dat de limiet niet bestaat.

Zou het kunnen zijn dat de opgave hetvolgende is?
((2x) - 2 ln (e(3-x)))/(x-2)
Dan bestaat de limiet voor x naar 2 wel. Die is: -5/2

NB: Gebruik (net als bij je ander opgave) de eigenschappen van de logaritme. En ln(e) = 1.

Groet. Oscar

os
30-6-2007


© 2001-2019 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#51542 - Limieten - 3de graad ASO