WisFaq!

\require{AMSmath} geprint op vrijdag 7 augustus 2020

Toon aan (2)

Ondertussen heb ik terug een probleem bij het bewijzen van het volgende.

Bewijs dat de som van alle n-de machtswortels in C uit een complex getal gelijk is aan nul.

Ik zelf zou beginnen met z=x+y∑j als standaardvorm voor mijn complex getal te nemen.

Omzetten naar de polaire gedaante omdat je dan gemakkelijker een n-de machtswortel kan nemen.
Dan misschien het arugment bepalen en de modulus.
En hier graak ik zo ongeveer vast. Omdat je als argument zo een arctan(y/x) krijgt al dan niet vermeerderd met een veelvoud van k∑2Pi/n en ik niet direct weet wat ik hiermee kan bereiken.

Kan iemand mij op weg wil/kan zetten?
Alvast dank,

Pieter

Pieter
11-3-2007

Antwoord

Het allersnelst gaat het als volgt: neem de eenheidsortel w=exp(i∑2$\pi$/n). Dan is elke eenheidswortel een macht van w: w0=1, w, w2, w3, ..., wn-1. Nu kun je wn-1 ontbinden als (w-1) maal (1+w+w2+...+wn-1)); maar wn-1=0 en w-1 is niet nul, dus de tweede som is gelijk aan nul.

kphart
11-3-2007


© 2001-2020 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#49628 - Complexegetallen - Student Hoger Onderwijs BelgiŽ