WisFaq!

\require{AMSmath} geprint op woensdag 23 september 2020

Wortel 2 is irrationaal

Ik zou het bewijs moeten hebben van vierkantswortel twee is irrationaal, en ook het hulpbewijs, dat hulpbewijs zou gaan over dat als a een tweevoud is, a ook een tweevoud is.
Alvast bedankt

Sofie Lemmens
12-9-2001

Antwoord

Stel $\sqrt{2}$ = p/q (p,q $\in$ N), waarbij de breuk niet meer vereenvoudigd kan worden. Dan geldt:

$\sqrt{2}$ = p/q
2 = p/q
2q = p ()

Hieruit volgt dat p even is. Maar dan moet p zelf even zijn (het kwadraat van een oneven getal is immers oneven (ga na)). Dus is p te schrijven als 2a (a is de helft van p). Dan is p gelijk aan 4a.
Dan volgt uit ():

2q = 4a
q= 2a

Dus is q even en dus is q zelf ook even.

Maar nu hebben we gevonden dat zowel p als q even zijn, en dus dat je beide kunt delen door 2. Dit is echter in strijd met de aanname dat de breuk p/q niet verder vereenvoudigd kan worden.

Conclusie:

Uit de aanname dat je $\sqrt{2}$ kunt schrijven als breuk volgt een tegenspraak. Dat betekent dat de aanname fout is, oftewel dat $\sqrt{2}$ niet als breuk te schrijven is. $\sqrt{2}$ is dus een irrationaal getal.

BRON: Pythagoras - wiskundetijdschrift

WvR
16-9-2001


© 2001-2020 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#264 - Bewijzen - Student hbo