Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Hulpmiddelen

Meetkunde

Oppervlakte en inhoud

Plaatjes en verhalen

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat

Wiskundeleraar


\require{AMSmath}

Antwoorden

Voorbeeld 1

Los op: 3x2 - 4x + 1 = 0
D = (-4)2 - 4.3.1 = 16 - 12 = 4
Dus:

x = 1/3 of x = 1

Voorbeeld 2

Los op: 2x2 + 4x + 6 = 0
D = 42 - 4.2.6 = 16 - 48 = -32
Dus geen oplossingen.

Voorbeeld 3

Los op: 3x2 - 8x + 2 = 0
D = (-8)2 - 4.3.2 = 64 - 24 = 40

Voorbeeld 4

Los op: 6x2 - 18 = 0
6x2 = 18
x2 = 3
x= 3 of x = -3
(In dit soort gevallen geen abc-formule)

Voorbeeld 5

Los op: 1/2x2 - 4x = 0
x2 - 8x = 0
x(x - 8) = 0
x = 0 of x = 8
(Ook hier geen abc-formule)

Voorbeeld 6

Los op: 6x2 - 12x + 6 = 0
x2 - 2x + 1 = 0
(x - 1)2 = 0
x - 1 = 0
x = 1

Voorbeeld 7

Los op: 2x2 - 12x + 16 = 0
x2 - 6x + 8 = 0
(x - 2)(x - 4) = 0
x = 2 of x = 4

Voorbeeld 8

Los op: x3 - 4x2 + 8x = 0
x(x2 - 4x + 8) = 0
x=0 of x2 - 4x + 8 =0
Van de tweede vergelijking is D = (-4)2 - 4.1.8 = -16
De tweede vergelijking heeft geen oplossingen.
De oplossing is:
x = 0

Voorbeeld 9

Voor welke waarde van p heeft het volgende stelsel precies één oplossing?
| y = x2 - 4x + p
| y = x

Oplossing:
x2 - 4x + p = x
x2 - 5x + p = 0
D = (-5)2 - 4.1.p = 25 - 4p
Voor één oplossing moet de discriminant D gelijk aan 0 zijn.
Dus:
25 - 4p = 0
4p = 25
p = 61/4


©2004-2023 WisFaq