Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Hulpmiddelen

Meetkunde

Oppervlakte en inhoud

Plaatjes en verhalen

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat

Wiskundeleraar


\require{AMSmath}

2. Kwadraatafsplitsen

Het idee van kwadraatafsplitsen is dat je het linker deel van een vergelijking als x2+8x-12=0 probeert te schrijven als een kwadraat.

Een willekeurige drieterm schrijven als een kwadraat kan niet (altijd), want het zou toch wel heel toevallig zijn als x2+8x-12 precies het kwadraat zou zijn van een tweeterm.

Maar, we doen dan toch! Als je kijkt naar kwadraten van tweetermen, dan valt er toch iets op:
(x+1)2=x2+2x+1
(x+2)2=x2+4x+4
(x+3)2=x2+6x+9
Enz...

Algemeen:

(x+a)2=x2+2ax+a2

Het blijkt dat een kwadraat steeds bestaat uit een term met x2, het dubbelprodukt (van x en a) en a2. Deze 'wetenschap' kunnen we gebruiken om elke willekeurige drieterm te schrijven als een kwadraat (nou ja bijna dan!).

Voorbeeld

Als ik x2+8x-12 wil schrijven als een kwadraat zal het vanwege het dubbelprodukt 8x iets moeten worden als (x+4)2.
Maar (x+4)2=x2+8x+16 en dat lijkt wel op x2+8x-12 maar toch niet helemaal. Wat je dan doet is het achteraf 'goed praten', want als ik x2+8x-12 schrijf als (x+4)2-28 dan klopt het namelijk wel precies, kijk maar:

(x+4)2-28=x2+8x+16-28=x2+8x-12

Oplossen

x2+8x-12=0
(x+4)2-16-12=0
(x+4)2-28=0
(x+4)2=28
x+4=-28 of x+4=28
x=-4-28 of x=-4+28
(x=-4-27 of x=-4+27)


©2004-2023 WisFaq