Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Hulpmiddelen

Meetkunde

Oppervlakte en inhoud

Plaatjes en verhalen

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat

Wiskundeleraar


\require{AMSmath}

5. Hypergeometrische verdeling

Voorbeeld 1

In een vaas zitten 12 witte en 8 rode knikkers. Je pakt hieruit 4 knikkers zonder terugleggen. Wat is de kans op 3 witte knikkers?

Antwoord

Je kunt deze vraag als volgt beantwoorden.

  1. Bereken P(w,w,w,r)
  2. Bereken het aantal mogelijke volgordes
  3. Bereken de kans op 3 wit en 1 rood

Uitwerking

$\eqalign{
  & P(w,w,w,r) = \frac{{12}}{{20}} \cdot \frac{{11}}{{19}} \cdot \frac{{10}}{{18}} \cdot \frac{8}{{17}} = \frac{{88}}{{969}}  \cr
  & P(3\,\,wit\,\,en\,\,1\,\,rood) = 4 \cdot \frac{{88}}{{969}} = \frac{{352}}{{969}} \cr} $

Hypergeometrische verdeling

Een andere manier om dit soort problemen aan te pakken is met de volgende 'redenering':

Als je niet op de volgorde let, dan zijn er
$
\left( {\begin{array}{*{20}c}
{12} \\
3 \\
\end{array}} \right)
$ manieren om 3 van de 12 witte knikkers te pakken.
Er zijn $
\left( {\begin{array}{*{20}c}
8 \\
1 \\
\end{array}} \right)
$ manieren om 1 van de 8 rode knikkers te pakken.
In totaal zijn er dus $
\left( {\begin{array}{*{20}c}
{12} \\
3 \\
\end{array}} \right) \cdot \left( {\begin{array}{*{20}c}
8 \\
1 \\
\end{array}} \right)
$ manieren om 3 witte en 1 rode knikker uit de vaas te pakken.
In totaal zijn er $
\left( {\begin{array}{*{20}c}
{20} \\
4 \\
\end{array}} \right)
$ manieren om 4 knikkers uit de vaas te pakken.

P(3 wit en 1 rood)=$
\frac{{\left({\begin{array}{*{20}c}
{12}\\
3\\
\end{array}}\right)\cdot\left({\begin{array}{*{20}c}
8\\
1\\
\end{array}}\right)}}{{\left({\begin{array}{*{20}c}
{20}\\
4\\
\end{array}}\right)}}=\Large\frac{{352}}{{969}}
$

Algemeen

In een vaas bevinden zich a witte en b rode knikkers. Je pakt er n knikkers uit. De kans op k witte knikkers is dan

$
P(X = k) = \frac{{\left( {\begin{array}{*{20}c}
a \\
k \\
\end{array}} \right)\left( {\begin{array}{*{20}c}
b \\
{n - k} \\
\end{array}} \right)}}{{\left( {\begin{array}{*{20}c}
{a + b} \\
n \\
\end{array}} \right)}}
$

Voorbeeld 2

In een klas zitten 12 jongens en 15 meisjes. Uit deze klas gaan 5 leerlingen een feest organiseren. Je kiest willekeurig 5 leerlingen. Wat is de kans dat er 3 jongens (en dus 2 meisjes) in dit comité zitten?

Antwoord

$
P(X = 3) = \frac{{\left( {\begin{array}{*{20}c}
{12} \\
3 \\
\end{array}} \right)\left( {\begin{array}{*{20}c}
{15} \\
2 \\
\end{array}} \right)}}{{\left( {\begin{array}{*{20}c}
{27} \\
5 \\
\end{array}} \right)}} = 0,286
$

...en dat is toch handig!

Met de GR?

Met de grafische rekenmachine kan je dat zo berekenen:

Zie ook 3. Combinaties

Voorbeeld 3

De hypergeometrische verdeling heeft nog een voordeel: het werkt ook bij meerdere mogelijkheden.

  • In een vaas zitten 5 rode, 4 groene en 1 blauwe knikker. Je pakt 3 knikkers uit de vaas zonder terugleggen. Bereken de kans op 3 verschillende kleuren.
    Antwoord

F.A.Q.



©2004-2023 WisFaq