De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath}

Lineaire algebra

Matrices

Geachte,
Kunt u mij helpen?
Er is een 3 x 3 matrix gegeven met op de hoofddiagonaal a+1, a+1, a+1.
De andere waarden zijn allemaal '1'.
De bijbehorende kolommatrix is (van boven naar beneden): a+1, a+3, -2a-4.
De vraag is: Bepaal de waarde(n) van de reële parameter a, zodat het stelsel oneindig veel oplossingen heeft. (het antwoord is: a=-3)

Om hier inzicht in te krijgen heb ik de coëfficiëntenmatrix schoongeveegd, met op de hoofddiagonaal 3 x 1 en de rest nullen. De kolommatrix ziet er dan heel erg 'onvriendelijk' uit, met hier en daar breuken met a kwadraat en a tot de derde macht in de teller en noemer.... kortom ik kan hier niks mee en ik weet trouwens ook niet hoe ik verder moet.
Is mijn manier van schoonvegen misschien verkeerd??

Uw hulp zou mij zeer welkom zijn.

Alvast bedankt,
Arnout

Arnout
9-2-2023

Antwoord

Printen
Bij het vegen heb je waarschijnlijk een paar keer door een uitdrukking met $a$ erin gedeeld; dat is niet handig, die uitdrukking kan gelijk aan $0$ zijn en dan raak je oplossingen kwijt.
Iets handiger:
$$\left(
\begin{matrix} a+1&1&1&|&a+1\\ 1&a+1&1&|&a+3\\ 1&1&a+1&|&-2a+4\end{matrix}
\right) \longleftarrow
\left(
\begin{matrix} a+1&1&1&|&a+1\\ 1&a+1&1&|&a+3\\ a+3&a+3&a+3&|&0\end{matrix}
\right)
$$Nu moet je twee gevallen onderscheiden: $a=-3$ en $a\neq-3$.
In het eerste geval laat je de rij met nullen weg en krijg je
$$\left(
\begin{matrix} -2&1&1&|&-2\\ 1&-2&1&|&0\end{matrix}
\right)
$$In het tweede geval kun je de derde rij veilig door $a+3$ delen
met als resultaat
$$\left(
\begin{matrix} a+1&1&1&|&a+1\\ 1&a+1&1&|&a+3\\ 1&1&1&|&0\end{matrix}
\right)
$$Trek de onderste rij van de andere af en je ziet dat je nog $a=0$ en $a\neq0$ moet onderscheiden.

kphart
9-2-2023


Norm van een matrix

beste

ik moet het volgende bewijzen over de som-norm van een matrix A: ||A||=max_[1$ \le $ j$ \le $ m]( $\sum $ [i=1]^[n]|a_[ij]|).

dit zijn mijn gegevens:
in een matrix ruimte L( $\mathbf{R}$ ^m, $\mathbf{R}$ ^n) wordt de operatornorm gedefinieerd als ||A||_[op]:=sup{||A(x)|| met ||x||$ \le $ 1}, met ||.|| een norm in $\mathbf{R}$ ^m en in $\mathbf{R}$ ^n. ( we nemen dezelfde norm in beide ruimten). ik mag gebruik maken van de definitie van de som-norm in $\mathbf{R}$ ^n, namelijk ||x||_s= $\sum $ ^[i=1]^n|x_i|

ik weet echt niet hoe ik hier aan moet beginnen

in bijlage is er nog een foto van de effectieve vraag, voor de duidelijkheid.

alvast bedankt!

kasper
1-3-2023

Antwoord

Printen
Wat ik zou doen is klein beginnen, met een expliciete $m$ en $n$, bijvoorbeeld $m=n=2$, dan kun je de formules uitschrijven.
Dus
$$A=\begin{pmatrix} a_{1,1}& a_{1,2}\\ a_{2,1}&a_{2,2}\end{pmatrix}
$$En dan geldt voor een vector $x=\binom{x_1}{x_2}$ dat
$$Ax = \begin{pmatrix} a_{1,1}& a_{1,2}\\ a_{2,1}&a_{2,2}\end{pmatrix}
\binom{x_1}{x_2}
=\binom{a_{1,1}x_1+a_{1,2}x_2}{a_{2,1}x_1+a_{2,2}x_2}
$$en dus
$$\|Ax\|_\Sigma = |a_{1,1}x_1+a_{1,2}x_2|+|a_{2,1}x_1+a_{2,2}x_2|
$$we kunnen dit via de driehoeksongelijkheid overschatten met
$$|a_{1,1}||x_1|+|a_{1,2}||x_2|+|a_{2,1}||x_1|+|a_{2,2}||x_2|=
|x_1|(|a_{1,1}|+|a_{2,1}|)+|x_2|(|a_{1,2}|+|a_{2,2}|)
$$Schrijf nu $K=\max\{|a_{1,1}|+|a_{2,1}|,|a_{1,2}|+|a_{2,2}|\}$; dan vinden we uiteindelijk
$$\|Ax\|_\Sigma \le K(|x_1|+|x_2|) = K\|x\|_\Sigma
$$Conclusie: $\|A\|_\Sigma \le K$.

Als je nu nog een vector $x$ kunt vinden met $\|x\|_\Sigma=1$ en $\|Ax\|_\Sigma=K$ dan heb je bewezen dat $\|A\|_\Sigma = K$.

En als je dit goed begrepen hebt is het algemene geval niet moeilijk meer.

kphart
1-3-2023


Bewijzen met volledige inductie

$
\left( {\begin{array}{*{20}c}
2 & 1 & 3 \\
0 & 2 & 4 \\
0 & 0 & 2 \\
\end{array}} \right)^n = 2^{n - 1} \left( {\begin{array}{*{20}c}
2 & n & {n(n + 2)} \\
0 & 2 & {4n} \\
0 & 0 & 2 \\
\end{array}} \right)
$Hoe kan ik dit bewijzen? Ik snap het. Ik kan wel de stappen maar het lukt niet. Kan mij iemand helpen AUB?

anonie
7-3-2023

Antwoord

Printen
Te bewijzen
$$\begin{pmatrix}
2&1&3\\0&2&4\\0&0&2
\end{pmatrix}^n
=
2^{n-1}
\begin{pmatrix}
2&n&n(n+2)\\0&2&4n\\0&0&2
\end{pmatrix}
$$Basis: voor $n=1$ staat er
$$\begin{pmatrix}
2&1&3\\0&2&4\\0&0&2
\end{pmatrix}
=
2^0
\begin{pmatrix}
2&1&1\cdot(1+2)\\0&2&4\cdot n\\0&0&2
\end{pmatrix}
$$en dat klopt.

Inductiestap: stel dat voor een $n$ geldt
$$\begin{pmatrix}
2&1&3\\0&2&4\\0&0&2
\end{pmatrix}^n
=
2^{n-1}
\begin{pmatrix}
2&n&n(n+2)\\0&2&4n\\0&0&2
\end{pmatrix}
$$en bewijs van daaruit
$$\begin{pmatrix}
2&1&3\\0&2&4\\0&0&2
\end{pmatrix}^{n+1}
=
2^{n}
\begin{pmatrix}
2&n+1&(n+1)(n+3)\\0&2&4(n+1)\\0&0&2
\end{pmatrix}
$$Dat doe je door
$$2^{n-1}
\begin{pmatrix}
2&n&n(n+2)\\0&2&4n\\0&0&2
\end{pmatrix}
\begin{pmatrix}
2&1&3\\0&2&4\\0&0&2
\end{pmatrix}
$$netjes uit te vermenigvuldigen en te laten zien dat het product gelijk is aan
$$2^{n}
\begin{pmatrix}
2&n+1&(n+1)(n+3)\\0&2&4(n+1)\\0&0&2
\end{pmatrix}
$$

kphart
7-3-2023


home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2023 WisFaq - versie 3