De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath}

Oplossen van een logaritmische vergelijking

Hallo beste medewerker van WisFaq!
Mijn vraag luidt als volgt.

Hoe los je de volgende vergelijking op?

$3e^{5x-2}-4=6$

Dank u wel.

Ramy O
Leerling bovenbouw havo-vwo - vrijdag 26 januari 2018

Antwoord

Hallo Ramy,

Voor zulke vergelijkingen werk ik graag met het "schillenmodel". Vanaf de $x$ aan de linkerkant kun je rondjes zetten om de stappen die je een voor een moet zetten om tot de formule aldaar te komen. Deze rondjes zorgen voor de schillen.
q85621img1.gif
Van buitenaf ga je nu een voor een de schillen rond de $x$ afpellen. Net als bij een ui. Aan de andere kant van de = doe je steeds de "tegengestelde" bewerking.

Dus om te beginnen gaat de $-4$ van de linkerkant er af en wordt rechts $+4$:

$3e^{5x-2}=6+4=10$

Volgende schil is de keer 3, aan de rechterkant wordt dat gedeeld door 3:

$e^{5x-2}=\frac{10}3 = 3 \frac13$

Volgende schil is de e-macht, aan de rechterkant wordt dat de natuurlijke logaritme ln:

$5x-2 = \ln(3 \frac13)$

Ik denk dat je de laatste schilletjes zelf kunt.

Met vriendelijke groet,

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
vrijdag 26 januari 2018



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2018 WisFaq - versie IIb

eXTReMe Tracker