De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath}

Re: Re: Ik zit vast met een oefening

 Dit is reactie op vraag 85593 
Ik heb me vergist onder de wortel staat er x-2, bij de opgave

Tracy
3de graad ASO - dinsdag 23 januari 2018

Antwoord

Dat doen we die toch ook nog even...

Als ik verder geen rekenfouten heb gemaakt krijg je zoiets als dit:

$
\eqalign{
& f(x) = \frac{{\root 4 \of x }}
{{x\sqrt {x - 2} }} \cr
& f(x) = \frac{1}
{{x^{\frac{3}
{4}} \cdot \left( {x - 2} \right)^{\frac{1}
{2}} }} = \frac{1}
{{\left( {x^{\frac{5}
{2}} - 2x^{\frac{3}
{2}} } \right)^{\frac{1}
{2}} }} = \left( {x^{\frac{5}
{2}} - 2x^{\frac{3}
{2}} } \right)^{ - \frac{1}
{2}} \cr
& f'(x) = - \frac{1}
{2}\left( {x^{\frac{5}
{2}} - 2x^{\frac{3}
{2}} } \right)^{ - \frac{3}
{2}} \left( {\frac{5}
{2}x^{\frac{3}
{2}} - 3x^{\frac{1}
{2}} } \right) \cr
& f'(x) = \frac{{ - \frac{1}
{2}\left( {\frac{5}
{2}x^{\frac{3}
{2}} - 3x^{\frac{1}
{2}} } \right)}}
{{\left( {x^{\frac{5}
{2}} - 2x^{\frac{3}
{2}} } \right)^{\frac{3}
{2}} }} \cr
& f'(x) = \frac{{ - \left( {5x^{\frac{3}
{2}} - 6x^{\frac{1}
{2}} } \right)}}
{{4\left( {x^{\frac{5}
{2}} - 2x^{\frac{3}
{2}} } \right)^{\frac{3}
{2}} }} \cr
& f'(x) = \frac{{ - 5x + 6}}
{{4x^{\frac{7}
{4}} \left( {x - 2} \right)^{\frac{3}
{2}} }} \cr
& f'(x) = \frac{{ - 5x + 6}}
{{4\root 4 \of {x^7 } \sqrt {\left( {x - 2} \right)^3 } }} \cr}
$

Helpt dat? Anders nog maar verder vragen.

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
dinsdag 23 januari 2018



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2018 WisFaq - versie IIb

eXTReMe Tracker