De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath}

Matrices en subspaces

Goedenavond, sorry dat ik nog een vraag stel en dat het in het Engels is, maar heb geen idee hoe ik dit antwoord fatsoenlijk zou moeten noteren. Ben zelf redelijk op het antwoord gekomen door de drie 'axioms' te gebruiken maar vind de formele notatie heel lastig.... Bij voorbaat dank!

Consider the vector space V consisting of all differentiable functions from R to R. The subset W0 ⊂ V consists of all functions in V for which f′(3) = 0, and W1 ⊂ V consists of all functions in V for which f′(3) = 1. Prove that W0 is(!) and W1 is not(!) a linear subspace of V .

Walter
Student universiteit - donderdag 28 september 2017

Antwoord

Idem als bij de vorige vraag: bijvoorbeeld, voor $W_2$ als $f(3)=1$ en $g(3)=1$ geldt dan ook $(f+g)(3)=1$? Weer alledrie de eisen langslopen.

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
donderdag 28 september 2017



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2017 WisFaq - versie IIb

eXTReMe Tracker