De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath}

Steekproef stochast

Beschouw een populatie x1,...,xN en de nieer de stochastische variabelen X1,.....,XN
als de eerste, tweede, t/m N-de trekking uit de populatie, zonder teruglegging. Neem ook aan dat alle x1,...,xN verschillend zijn.

Ik snap niet waarom alle Xi's dezelfde verdeling hebben als er geen teruglegging is?

Namelijk P(X1=xj)=1/N en P(X2=xj)1/(N-1) dus steeds een andere kans massa functie?

oscar
Student universiteit - zaterdag 16 september 2017

Antwoord

Er zijn $N!$ mogelijke trekkingen (mogelijke volgorden waarin de objecten verschijnen).
Het aantal trekkingen waarbij een bepaald individu, $x$, als tweede tevoorschijn komt is $(N-1)!$ (alle mogelijke volgorden van de andere $N-1$ individuen).
De kans dat $x$ als tweede verschijnt is dus $(N-1)!/N!$, en dat is $1/N$.

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zaterdag 16 september 2017



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2017 WisFaq - versie IIb

eXTReMe Tracker