De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath}

Raaklijn bepalen

Onderstaande vraag komt uit de toelatingsproef geneeskunde juli 2016:

"Gegeven is de functie f met als voorschrift f(x) = x3 - 11x2 - 25x - 13. De rechte met vergelijking y = px + q raakt aan de gra fiek van f in het punt A(a; f(a)) en snijdt de grafi ek van f in het punt B(13; 0). Als A en B verschillende punten zijn, dan is p + q gelijk aan."
  • [-2352]
  • [-1]
  • [0]
  • [1]
Ik vraag me af hoe je deze vraag zo efficiŽnt mogelijk oplost. Op de toelatingsproef geneeskunde hebben we immers niet veel tijd.

Wat ik al geprobeerd heb is:
Het punt B is een nulpunt voor beide functies, daarmee vond ik dat 13p + q = 0. Dit is 1 vergelijking met 2 onbekenden. Ik moet dus nog een vergelijking vinden. Omdat px + q een raaklijn is door het punt A, heb ik px + q proberen gelijk te stellen aan f'(a) ∑ (x - a) + f(a). Ik kwam echter tot lange berekeningen en heb nu 3 onbekenden en maar 2 vergelijkingen.

Kan iemand me leren hoe je zoiets efficiŽnt oplost?
Alvast bedankt.

Ibrahi
Student universiteit BelgiŽ - donderdag 6 juli 2017

Antwoord

Je kunt er een probleem met ťťn onbekende van maken: schrijf de raaklijn in $a$ op, zoals je gedaan hebt.
$$
y=f(a)+f'(a)(x-a)
$$
Die lijn gaat door $(13,0)$, dus volgt
$$
0=f(a)+f'(a)(13-a)
$$
Door nu $f(a)$ en $f'(a)$ (netjes) uit te schrijven krijg je een vergelijking voor $a$ en omdat $f(13)=0$ kun je $a-13$ wegdelen uit $f(a)$ en buiten de haakjes halen zodat je een tweedegraadsvergelijking voor $a$ overhoudt.

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
donderdag 6 juli 2017



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2017 WisFaq - versie IIb

eXTReMe Tracker