De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath}

Bepalen van zuiver imaginair nulpunt

Gegeven: z3+2(1-i)z2+(1+m2-4i)z-2i(1+m2)=0 (met z element complexe getallen en parameter m element van de reŽle getallen)

(1) Toon aan dat deze vergelijking een zuiver complex nulpunt heeft en bereken dit nulpunt.
Ik heb verondersteld dat het zuiver imaginair nulpunt gelijk is aan ai (i2=-1 en a element van de reŽle getallen). Daarna ingevuld en ik heb gesteld dat het reŽle deel van de vergelijking nul moest zijn (a3-a=0). ( ik heb nog nooit zo'n vraag opgelost maar ik heb me gebaseerd op het bepalen van een reŽel nulpunt bij complexe vergelijkingen waar het reŽle en imaginaire deel gelijk moeten zijn aan 0) Daaruit volgt dat a=2 en a=0. Ik heb a=0 geschrapt omdat ik anders geen imaginair getal uitkom. Ik stel dus dat het zuiver imaginair nulpunt: a=2i. Klopt dit?

(2) Bepaal de andere oplossingen a.d.h.v reŽle parameter m. Dit zou ik dan oplossen met behulp van Horner.

Alvast bedankt!

Xavier
3de graad ASO - woensdag 14 juni 2017

Antwoord

Hallo Xavier,

Je eerste stap is goed. Ik zie alleen niet helemaal hoe je aan $a^3-a=0$ bent gekomen, maar misschien is het ook wel een typfout. Ik kom op $-2a^2+4a=0$ en dat levert zoals je zegt $a=0 \vee a=2$.
Maar dan ben je er nog niet helemaal. Je moet dan nog wel even door substitutie controleren dat $z=0i$ en $z=2i$ ook echt oplossingen van de vergelijking opleveren (immers, om de vergelijking opgelost te krijgen moet zowel het imaginaire als het reŽle deel nul worden!). Dat doet $z=0i$ (omdat $m$ reŽel is) niet, $z=2i$ wel.

Nu stap (2), ook daar heb je het goede idee. Ga door.

Succes.

Met vriendelijke groet,

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
woensdag 14 juni 2017



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2017 WisFaq - versie IIb

eXTReMe Tracker