De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath}

Re: Splitsen in partieelbreuken

 Dit is reactie op vraag 84508 
Beste Kphart

Mijn eerste breuk is -1/x, dit integreren geeft -ln(x)
De tweede breuk is 1/(x-0.01), dit integreren geeft ln(x-0.01).

Dan wordt dit ln[(x-0.01)/(x)].

De oplossing uit het boek toont het omgekeerde, nl ln[x/(x-0.01)] en toont bovendien ook nog een breuk (1/10), dus zit er dan nog een fout in mijn berekening?

Als ik de noemers vermenigvuldig x(x-0.01) heb ik x2 - 0.01x terwijl de noemer uit de opgave (0.1x-10x2) is. Dus moet ik mijn oplossing nog ergens vermenigvuldigen met -1/10? dan wordt de teller in de opgave -0.01?

Kan ik een dergelijke fout ergens controleren zodat ik in de toekomst weet dat ik juist bezig ben?

Hartelijk bedankt.

Fabian
Student universiteit BelgiŽ - zondag 28 mei 2017

Antwoord

Je breuksplitsing is ook niet goed:
$$
-\frac1x+\frac1{x-0.01}=\frac{0.01}{x^2-0.01x}
$$
en dat is niet gelijk aan de gegeven breuk (controleer een breuksplitsing altijd even door de breuken weer op te tellen). Als je in je breuk de $10$ in de noemer buiten de haakjes haalt krijg je
$$
\frac{0.001}{x(0.01-x)}
$$
Nu geeft de het rekenwerk $A=\frac1{10}$ en $B=\frac1{10}$.

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 28 mei 2017



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2017 WisFaq - versie IIb

eXTReMe Tracker