De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath}

Vraag rekenregels limieten (oneindig)

de limiet is als volgt:

lim[1/5∑(n+1)∑((1+3/n)/(1+4/n))2]
met n $\to$ oneindig
Het is duidelijk dat lim[((1+3/n)/(1+4/n))2] naar 1 convergeert en lim[(n+1)] divergeert, dus dat de limiet naar oneindig gaat.

Aangezien lim(n+1) geen reŽl getal is kun je niet de rekenregels voor limieten toepassen
(lim[(a)(b)]=lim(a)∑lim(b)).
Mijn vraag: Hoe kun je dit dan wel netjes aantonen?

Alvast bedankt

oscar
Student universiteit - zaterdag 14 januari 2017

Antwoord

Het gaat, zo te zien, om
$$
\lim_{n\to\infty}\frac15(n+1)\left(\frac{1+\frac3n}{1+\frac4n}\right)^2
$$inderdaad geldt, volgens de rekenregels, dat
$$
\lim_{n\to\infty}\left(\frac{1+\frac3n}{1+\frac4n}\right)^2=1
$$Er is dus een $N$ zo dat voor $n\ge N$ geldt
$$
\left(\frac{1+\frac3n}{1+\frac4n}\right)^2 \ge\frac12
$$en dus
$$
\frac15(n+1)\left(\frac{1+\frac3n}{1+\frac4n}\right)^2\ge\frac1{10}(n+1)
$$Nu kun je via de definitie van $\lim_nx_n=\infty$ laten zien dat de limiet $\infty$ is.

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zaterdag 14 januari 2017



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2017 WisFaq - versie IIb

eXTReMe Tracker