Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Hulpmiddelen

Meetkunde

Oppervlakte en inhoud

Plaatjes en verhalen

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat

Wiskundeleraar


\require{AMSmath}

Inhoud afgeknotte cilinder

Hoe bereken je de inhoud van een afgeknotte cilinder?

Imp
Iets anders - dinsdag 10 mei 2022

Antwoord

Je kunt dit opvatten als de helft van een complete cilinder met een doorsnede van 8 en een hoogte van 8. Bereken de inhoud en neem de helft voor het lichaam uit het plaatje.

$
\eqalign{
& I_{cilinder} = \pi r^2 h \cr
& I_{cilinder} = \frac{1}
{4}\pi d^2 h \cr
& I_{d = 8,h = 8} = \frac{1}
{4}\pi \cdot 8^2 \cdot 8 = 128\pi \cr
& I_{afgeknot} = 64\pi \approx 201,1 \cr}
$

Of als formule met $d=8$, $h_1=6$ en $h_2=2$:

$
\eqalign{
& I_{afgeknot} = \frac{1}
{2} \cdot \frac{1}
{4}\pi d^2 h \cr
& I_{afgeknot} = \frac{1}
{8}\pi d^2 \left( {h_1 + h_2 } \right) \cr
& I_{afgeknot} = \frac{1}
{8}\pi \cdot 8^2 \left( {6 + 2} \right) = 64\pi \approx 201,1 \cr}
$

Kan ook...:-)

WvR
dinsdag 10 mei 2022

©2001-2023 WisFaq