Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Hulpmiddelen

Meetkunde

Oppervlakte en inhoud

Plaatjes en verhalen

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat

Wiskundeleraar


\require{AMSmath}

 Dit is een reactie op vraag 11033 

Re: Formule voor de som van de delers

Hoe zou je dit met volledige inductie kunnen bewijzen?
$\sigma$(x) = [p1q1+1-1]/[p1-1]...[pnqn+1-1]/[pn-1]

Cor
Student hbo - dinsdag 21 mei 2019

Antwoord

Door aan te nemen dat de gelijkheid geldt voor alle $y $<$ x$ en vervolgens naar $\sigma(x)$ te kijken.

Geval 1: $x$ is een macht van een priemgetal is, zeg $x=p^k$ dan is het eenvoudig alle delers op te schrijven en op te tellen (dus je gebruikt de inductieaaname niet).

Geval 2: $x$ is niet een macht van een priemgetal. Neem een priemdeler, $p$, van $x$ en schrijf $x=y\cdot p^k$ ($p^k$ de hoogste macht van $p$ die $x$ deelt). Gebruik het gegeven voor $y$ en de formule $\sigma(x)=\sigma(y)\cdot\sigma(p^k)$.

kphart
vrijdag 24 mei 2019

©2001-2023 WisFaq