Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Hulpmiddelen

Meetkunde

Oppervlakte en inhoud

Plaatjes en verhalen

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat

Wiskundeleraar


\require{AMSmath}

Cosinus halve hoek met een gegeven hoek

Ik heb moeite met de volgende vraag
gegeven: a = arcsin1/3
gevraagd cos(1/2·a)

Ik heb de volgende formule voor de halve hoek:
cos(1/2·a) = √((1+cos(a))/2)

cos(arcsin1/3) = 2/3 √ 2

Dus
√((1+2/3 √ 2)/2)

Wat onder de eerste wortel staat heb ik omgeschreven als:
1/2 + 2/6 √2
wordt dus
√(1/2 + 2/6 √2)

En dat is waar ik vastloop.

Volgens de uitwerking moet er 1/6 √(18+12√2) uitkomen

Kevin
Student hbo - dinsdag 1 augustus 2017

Antwoord

Je antwoord klopt, vermenigvuldig het maar met $\frac66$ en brengt $6=\sqrt{36}$ binnen de wortel.

kphart
dinsdag 1 augustus 2017

 Re: Cosinus halve hoek met een gegeven hoek 

©2001-2023 WisFaq