De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: Differentiaaltopologie: Integraal 1-vorm van variëteit

 Dit is een reactie op vraag 97635 
Dit is wat ik van de hint gemaakt heb:

f(x+h)-f(x) is de integraal van x naar x+h van w. Dit heb ik dan geparametriseerd met c: $\lambda $ - $>$ x+ $\lambda $ waarbij $\lambda $ $\in $ [0,h]. Zodanig we G(h) kunnen stellen aan de integraal van 0 tot h van c*w. We krijgen nu dat f(x+h)-f(x)/h=G(h)-G(0)/h. Nemen we de limiet h- $>$ 0 dan is dit G'(0). Ik weet niet echt wat ik verder moet doen, hopelijk heb ik de hint juist begrepen.

Rafik
Student universiteit België - donderdag 16 maart 2023

Antwoord

Je hebt nu een functie van meer veranderlijken (via een parametrisering van een kaart waar $x$ op ligt) en die kun je niet zomaar differentiëren via de limiet van een differentiequotiënt.
Zoek de definitie van $\mathrm{d}f$ op; je zult zien dat het om de gradiënt van $f$ gaat. Die bepaal je door richtingsafgeleiden van $f$ te nemen en dat gaat in feite door partieel te differentiëren.

In dit geval speelt de hoofdstelling van de integraalrekening (en het bewijs daarvan) ook nog een rol.

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
vrijdag 17 maart 2023



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3