![]() |
De digitale vraagbaak voor het wiskundeonderwijshome | vandaag | gisteren | bijzonder | gastenboek | wie is wie? | verhalen | contact |
||||||||||||||||||
|
\require{AMSmath}
![]() ![]() ![]() Minimale koppelingGegeven is een ongerichte graaf G met knopen V en kanten E, en een knopenbedekking X. Gevraagd is om een koppeling K te vinden van minimale kardinaliteit waarbij de eindpunten van de kanten in de koppeling een superset vormen van C. Bovendien moet K worden gevonden in polynomiale tijd in de grootte van de invoer. AntwoordZoals het nu geformuleerd is zal het niet lukken: een koppeling pakt een even aantal knopen. Als $C$ uit alle knopen bestaat, dus $C=V$, en als er een oneven aantal knopen is dan pakt de koppeling zeker niet alle knopen mee.
![]() ![]() ![]() home | vandaag | bijzonder | gastenboek | statistieken | wie is wie? | verhalen | colofon ©2001-2023 WisFaq - versie 3
|