De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: Re: Binonium van Newton

 Dit is een reactie op vraag 87339 
Thx, ik snap nu dat de coŽfficienten ook voor enkele variabelen gelden, dus ook voor an i.p.v. alleen voor (a+b)n. Het antwoord van het boek werkte dit onbegrip ook in de hand: (1/2+1/2)10. Hoe ze daar komen weet ik nog steeds niet, maar jouw uitleg is echt superhelder.

Ronald
Leerling bovenbouw havo-vwo - vrijdag 28 december 2018

Antwoord

In het algemeen geldt:

$
\left( {a + b} \right)^n = \sum\limits_{k = 0}^n {\left( {\begin{array}{*{20}c}
n \\
k \\
\end{array}} \right)a^{n - k} b^k }
$

In het geval $a=\frac{1}{2}$ en $b=\frac{1}{2}$ en $n=10$ krijg je:

$
\begin{array}{l}
\left( {\frac{1}{2} + \frac{1}{2}} \right)^{10} = \sum\limits_{k = 0}^{10} {\left( {\begin{array}{*{20}c}
{10} \\
k \\
\end{array}} \right)\left( {\frac{1}{2}} \right)^{10 - k} \left( {\frac{1}{2}} \right)^k } \\
\left( {\frac{1}{2} + \frac{1}{2}} \right)^{10} = \sum\limits_{k = 0}^{10} {\left( {\begin{array}{*{20}c}
{10} \\
k \\
\end{array}} \right)\left( {\frac{1}{2}} \right)^{10} } = 1 \\
\end{array}
$

Je kunt dat opvatten als de som van alle mogelijke uitkomsten van het tien keer gooien met een 'eerlijke' munt. De kans om 0, 1, 2, ..., 10 keer kop te gooien. De som van alle kansen moet natuurlijk wel gelijk aan 1 zijn.

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
vrijdag 28 december 2018



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2023 WisFaq - versie 3