De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

De veelterm n(x) bezit een niet-ontbindbare kwadratische factor

Ik citeer het schooldictaat: Toon aan dat, f(x)=2x/{(x-1)2.(x2+1)= {1/(x-1)2 } - {1/(x2+1)} Nu weet ik wel een oplossing te bedenken, waardoor ik meteen het goede antwoord krijg, maar dan heb ik het niet begrepen! Als ik de trent van de andere opgaven en voorbeelden volg, ziet het er volgens mij zo uit: {(Ax+B)/(x2+1)} + {C/(x-1)} + D/(x-1)2
Via de nulmakende factor x=+1 vind ik voor D=+1
Door vergelijking van de coefficienten van x3, x2, x en de constanten vind ik voor C=1, A=-1 en B=-2 Zodat:
- {(x+2)/x2+1} + {1/(x-1)} + {1/(x-1)2} Helaas is deze gedachtengang mischien niet juist. Wie helpt mij weer op het juiste spoor. Bij voorbaat hartelijk dank.

Johan
Student hbo - zaterdag 18 juli 2009

Antwoord

Beste Johan,

Ergens zal je in je stelsel dat je krijgt door de coŽfficiŽnten te identificeren, een fout maken... De methode is namelijk wel goed, maar je zou moeten vinden dat a=0, b=-1, c=0 en d=1 zodat je de opgegeven oplossing vind, die klopt namelijk.

Misschien moet je je rekenwerk nog eens nakijken; als je het niet vindt, kan je je uitwerking eventueel tonen.

mvg,
Tom

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 19 juli 2009



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2023 WisFaq - versie 3