De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Lagrange

Bepaal de gevraagde globale extrema van F met beperking g(x,y)=c

1) max f(x,y)= x2y2 met beperking: x2+4y2= 24

Stationaire punten zoeken mbv Lagrange - we komen x=0 en x=3 uit als de nulpunten die we moeten onderzoeken maar ook de stationaire punten die onstaan door y=0 en x=0 te pakken zijn eventuele kanshebbers voor een globale maxima.

Mijn VRAAG is: wanneer weet je dat je ook y=0 en x=0 moet onderzoeken? Want dit moet je niet bij iedere opgave. Hoe valt dit af te leiden?

LindaJ
Student universiteit BelgiŽ - zondag 1 maart 2009

Antwoord

Dit volgt meestal uit het oplossen van het stelsel van vergelijkingen. Je krijgt zoiets als:

q58516img1.gif
Maar die laatste stap klopt alleen als x$\ne$0. Je kunt immers niet delen door '2x' als x=0. Dus je moet het geval 'x=0' nog apart onderzoeken.

Op dezelfde manier kom je ergens in je uitwerking tegen dat je 'y' weg wilt delen. Ook daar geldt dan dat je het geval 'y=0' ook nog apart moet bekijken.

Op die manier kom ik (in dit geval) uit op 8 mogelijke kandidaten. Het komt er dus op neer dat je goed moet opletten als je bij het oplossen van je stelsel deelt door 'x' of 'y'. Je moet dan het geval dat 'x=0' of 'y=0' nog apart bekijken.

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
maandag 2 maart 2009



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2022 WisFaq - versie 3