WisFaq!

\require{AMSmath} geprint op donderdag 2 mei 2024

Groep en normaaldeler

Beste,

Gevraagd is te bewijzen dat een groep van orde 30 steeds een normaaldeler van orde 5 heeft. Ik heb al dat er ofwel 1 ofwel 6 Sylow 5-deelgroepen zijn. Als het er 1 is, dan is die unieke Sylow 5-deelgroep een normaaldeler van orde 5 en is het bewezen. Als het er 6 zijn, weet ik niet hoe ik het moet bewijzen.

Alvast bedankt!

Laure
14-11-2021

Antwoord

Hallo Laure,

Noem de groep G. Je hebt gezien dat het aantal Sylow 5-deelgroepen 1 of 6 is. Is het 1 dan ben je klaar, dus we bekijken het geval dat er 6 zijn. De bedoeling is aan te tonen dat dit niet gaat.

Op dezelfde wijze als bij orde 5 is het aantal Sylow 3-deelgroepen 1 of 10.

In elke Sylow 5-deelgroep zitten 4 elementen van orde 5. Aangezien het aantal Sylow 5-deelgroepen 6 is, dan betekent dat dat er 4*6=24 elementen van orde 5 zitten in G.

Als nu ook het aantal Sylow 3-deelgroepen 10 is, kun je eenvoudig bepalen hoeveel elementen er zijn van orde 3 in G. Samen met de 24 van orde 5 worden dat er teveel (details laat ik aan jouzelf).

Blijft het geval dat het aantal Sylow 3-deelgroepen 1 is, dus die deelgroep P is een normaaldeler. Neem ook een Sylow 5-deelgroep Q. Dan weten we dat PQ een deelgroep is van G en dat PQ orde 15 heeft. In PQ is snel in te zien dat er maar één Sylow 5-deelgroep is, dus in PQ bevinden zich slechts 4 elementen van orde 5. Kun jij nu zien waar de tegenspraak ontstaat?

Conclusie: als het aantal Sylow 5-deelgroepen 6 is, dan komen we op een tegenspraak. Het aantal is dus 1 en daarmee is het een normaaldeler.

Met vriendelijke groet,

FvL
14-11-2021


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#92886 - Algebra - Student universiteit België