WisFaq!

\require{AMSmath} geprint op donderdag 19 mei 2022

Malaria besmettingskansen

Goede morgen,

Je maakt een avontuurlijke reis door Afrika, in een zone met hoog risico voor malaria-besmetting en slikt daarom regelmatig pilletjes met antistoffen. Op een dag word je echter bestolen; niet alleen ben je al je geld kwijt, maar bovendien ook je hele voorraad pilletjes. Toevallig had je nog n dosis (500 mg) antistoffen in je broekzak zitten. Je hebt op dat ogenblik, als gevolg van wekenlange inname, 1000 mg antistoffen in je bloed. Laten we veronderstellen dat je pas gevaar loopt besmet te raken wanneer de hoeveelheid antistoffen in het bloed kleiner wordt dan 750 mg. Voorlopig is er dus niets aan de hand. Je lichaam verwijdert deze vreemde stoffen echter geleidelijk met een halveringstijd van 3 weken dus vroeg of laat onstaat er een rele kans op besmetting. Beschouw de volgende twee mogelijkheden:

Geval (a)
Je neemt onmiddellijk die laatste dosis in.
De totale hoeveelheid antistoffen komt daarmee op 1500 mg.
Hiermee kan je nog gedurende 21 dagen boven de kritische drempel van 750 mg kan blijven.

Dus ANTWOORD (a) opgelost

Geval (b)
Je stelt de inname van die laatste dosis nog even uit: je wacht namelijk tot je de kritische waarde een eerste maal bereikt, en slikt pas dan je laatste pilletje.

ANTWOORD 2
Je bereikt de drempel van 750 mg na ongeveer 8,72 dagen.
Daarna kan je opnieuw een tijdje verder, nl. nog 15,48 dagen, vooraleer je antistof-peil onherroepelijk onder de 750 mg duikt.
Wat is het verstandigst, onmiddellijke of uitgestelde inname?
Bij het eerste geval (a)werden de oplossingen
1000+500 =1500 mg ingegeven voor a)
en 21 dagen voor(b) (3 weken)
De oplossingen voor het tweede geval zijn voor (a)8,72 dagen en voor (b) 15,48 dagen.

Mag ik een beetje hulp voor dit tweede geval

Rik Lemmens
19-8-2021

Antwoord

Het lijkt me niet meer dan $21$ (eerste strategie) vergelijken met $8{,}72+15{,}48$ (tweede scenario), welk van de twee is meer?

kphart
19-8-2021


© 2001-2022 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#92583 - Logaritmen - Iets anders